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In this paper we present an efficient method for the numerical treatment of an integral 
appearing in the Froman-Froman phase-integral formula. Realistic error bounds are 
developed. The stability and convergence of the method are verified for a large class of 
integrands. 

1. INTRODUCTION 

On the basis of certain phase-integral approximations of arbitrary order introduced 
by Froman [I, 21 and generalized by Froman and Frbman [3] (cf. also pp. 126-131 
in [4]) the same authors have been able to derive a simple and accurate formula for 
the calculation of quanta1 matrix elements without the use of wave functions [5]. 
The purpose of the present paper is to devise a method for the numerical computation 
of the kind of integral which appears in the Froman-Froman formula for matrix 
elements. 

2. COMPUTATIONAL SCHEME 

We want to evaluate numerically integrals of the general form 

where a, b are real numbers and f0 , g,, are given complex-valued functions defined 
on the real interval [a, b]. Making the substitutions 

x’=a+ 
b-a 

2 6 + 1) t’=a+ +t + 1) 
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and defining 

we transform (1) to the standard form 

We often need to treat the special case g = 0. Then we are faced with the simpler 
task to evaluate 

s 1 

-l f(x) dx. (3) 

In order to facilitate the computer work we use real arithmetic. Writing 

and putting 
+f=fl+if,, g = g1 + kz (4) 

we get 

Z(f,g) = /)r,( x cos G,(x) - fi(x) sin G,(x)} exp{G,(x)> dx 1 

sin G,(x) + fi(x) cos G,(x)} exp(G,(x)} dx. 

Hence our result is obtained by evaluating two real integrals. Many different quadra- 
ture schemes are conceivable. We want to use methods which are efficient in a situation 
characterized as follows: 

(1) The functions fi and gi may be evaluated at any point. 
(2) The labor to determine these functional values is great in comparison to the 

effort to perform an arithmetic operation. 
(3) The work to evaluatef;(u) and g,(u) for some u is appreciably less than the 

combined effort to determinef,(u) and g,(u) for u # ZI. 

We are given an error tolerance and the problem is to determine integral (1) with 
an error which does not exceed the tolerance. Thus we generate a sequence of approxi- 
mations whose accuracy generally increases with the labor spent. We consider a 
general class of quadrature schemes where the calculations are performed by carrying 
out Steps (a) through (e) below: 

(a) Select an integer IZ and a corresponding set of abscissas x,~ , k = 1, 2,..., IZ. 
(b) The functions g, and g, are approximated by the polynomials p1 and pZ 

of degree less than II which interpolate g, and g, in the abscissas x,~ defined in the 
previous step. 
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(c) Put 

Pi(x) = j” pi(t) 4 i= 1,2. 
-1 

(5) 

This integration is done analytically. 
(d) Approximate Gi with Pi , i = 1,2. 
(e) The integral 

Km = j~lux x cos P&) - j&c) sin P,(x)} exp{P&)} dx 1 

+i j~lulc x sin P&l + fi(x) cm P&)> expPl,(x)) dx > 

is computed numerically using the same abscissas x,~ introduced in Step (a). 

If the estimated error in the computed integral exceeds a preselected tolerance, n 
is increased. The new n-value and the corresponding abscissas are selected in such a 
way that all old points are retained. 

In the method implemented in the computer program [6] 

X *k = cos(kn/(n + I)), k = 1, 2,..., n (6) 

and n is advanced according to the rule 

n new = %ll + 1 (7) 

and the first n-value is always taken to be odd. Thus if we start with n = 11, the 
sequence 11, 23, 47 ,... is generated. 

DEFINITION. 1. a< b means that a is much less than b, i.e., a/b is negligible 
in comparison with 1. 11 

DEFINITION. 2. Assume that x -C b and a w b. Then we write x 5 a (“x is 
approximately less than a”). (j 

Thus if x < 21j2, we could write x ;5 1.4 and x < 106. 
We next explain how the error in the computed value of (2) is estimated. Let n, 

be a given number and generate by (7) the sequence {nt}z , i.e., nz = 2nl-, + 1, 
I = 1, 2,..,. Denote by &(f, g) the estimate of (2) corresponding to nz . Hence the 
absolute value of the error is 

We use the approximation 

I KL d - KL g)l. (8) 

I Mf, d - 4f, Al 22 I ML d - Ll(.L &I. (9) 

This is a pessimistic assessment, if the sequence {Ir(f, g)}: is “rapidly converging.” 
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By this concept we mean that 

I uf, s> - wi !?)I < I ~z-ICL d - 4f, g>! 

when I is larger than some number I,, . For then we have 

I L-l(f, g) - wi dl G I Ldf, d - w dl + I uf, d 
- I L,(.L g) - h(f, d 

giving instead of (9) 

We illustrate the effectiveness of our method on the numerical examples accounted 
for in the Appendix. Since the exact values of these integrals are known we can deter- 
mine the actual errors and compare with the error bounds (9). We make the following 
observations. 

(i) The error decreases exponentially in n, i.e., there are positive constants 
A and B, with B -=c 1, such that 

I ML g> - Kit dl < A . B”’ 

where A and B depend on the integrands. 

(11) 

(ii) If we increase IZ according to (7), condition (10) is met, i.e., our error 
bound is, as a rule, too conservative. 

(iii) The presence of round-offs limits the obtainable accuracy of the computed 
value. As illustrated by the examples in the Appendix this ultimate accuracy is 
different for different integrands. 

Thus it is of no use to select n, too large. As described in [6] the calculations are 
stopped when for the first time condition (12a) is met while (12b) is violated 

I 4(.L g) - Ldf, dl < lC3 I M g)l, (124 
I 4cL g> - Ldf, s>l G I Ll(f, d - L4.L dl. WW 

It could be that the estimates for very low values of n behave irregularly and do not 
obey (11). Therefore condition (12a) is imposed in order to prevent a premature 
stop for this reason. However, as long as (11) prevails then (12b) is met. Therefore 
if (12b) is violated while (12a) holds we must have reached the noise level where round- 
offs prevent further improvement in the accuracy of the computed value. In the 
following sections we shall show that the computational methods implemented in 
[6] work for a general class of functions. 

3. CONVERGENCE PROPERTIES 

In this section we show that the error bound (11) is valid for a wide class of func- 
tions, if x,~ are chosen according to (6). 
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DEFINITION 3. Let p 3 1 be a given number. We define E, as the ellipse in 
the complex plane given by 

E, = {z = &(e + e-l), [ = peie, 0 < 0 < 27~). )I (13) 

Thus E, is an ellipse with foci at + 1 and - 1. Its half-axes have the lengthe i(p + p-l) 
and +(p - p-l), respectively. 

LEMMA 1. Let 9 be analytic in the interior and continuous at the boundary of the 
ellipse E, defined by (13) and let Q, be the polynomial of degree less than n which inter- 
polates g, at the points x,~ given by (6). Then there is a constant A, independent of n 
such that 

-z;s1 I T(X) - QnWI G Adz~-~. (14) 

Proof. Clearly nI=, (x - x,3 = 2-“/Y,,(x), where U,(x) is the Cebyiev poly- 
nomial of the second kind of degree n (see e.g. [8, p. 491). Using this result, it follows 
from Theorem 3.6.1, page 68 of [7] that 

Since 1 U,(x)\ < n + 1 on [-1, 11, we get the bound 

(15) 

(16) 

Using the result U,(x) = Ti+I(x)/(n + 1) and expression (4.4.2), page 83 of [7], 
we see that 

U,(C) = w - 4?n-1 
f - 5-l with 5 = a(( + e-1). 

Hence, putting f = peie 

u,(5) = (pa+l - p-“3 cos(n + 1) 8 + i(pn+l + p-“-l) sin(n + 1) 0 
(p - p-l) cos 8 + i(p + p-l) sin 8 

and 

I Un(Ol” = (P2n+2 + p-2+2 - 2 c~~(2n + 2) e)j(p2 + p-2 - 2 cos 2e). 

Therefore 
I untoi > tpn+l - p-“-wp + p-7. 

Entering this result into 
Put 

(16) we easily reach the desired conclusion. 11 

T(x) = f(x) exp jlz g(t) dt/, 
-1 
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Then (2) takes the form 

s 
-t 1 

d4 dx. (17) 
-1 

By Lemma 1 Steps (b), (c), and (d) entail that v in (17) is replaced by y + A, where 

IAn( < C * D” (18) 

where C and D are constants and 0 < D < 1. 
Interpolating in the abscissas &k given by (6) and integrating the resulting poly- 

nomial is equivalent to using Filippi’s rule [9], 

d.X> dx = i A,k(P(Xnk), 
k=l 

(1% 

which has nonnegative weights Ank . It is also known that provided 9 meets the same 
conditions as in Lemma 1, then there are constants C,, and D, with 0 < Do < 1 
such that 

See [IO, 111. 

We now prove 

j j-y Y’(X) dx - $ &&d / G Cohn. (20) 

LEMMA 2. Let E,, and y be as in Lemma 1 and let A,, meet (18). Then there are 
constants K and L, 0 < L < 1, such that 

where x& is given by (6) and A,& i& the corresponding weight in Filippi’s rule. 

Proof. Due to (20) we have 

Since A nk 3 0 and Filippi’s rule gives exact results for F(X) = 1 we get 

-f A,,k = i /kink / = 2. 
k=l k=l 

Therefore 

Rb j s” ?J(X) dx - i And&k) ( + 2 1 Ant 1 1 A.(X,,)t -1 k-l k=l 

< C,DO* + 2CD” 

and hence the assertion follows. 11 
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Thus by combining Lemmas 1 and 2 we obtain 

THEOREM 1. Let h and gi, i = 1,2 meet the assumptions of Lemma 1 and let 
x,&k be given by (6). Then the truncation error I In(f, g) - I(f, g)I after performing 
Steps (a) through (e) of the computational scheme satisfies (11). 11 

This result is also confirmed by the numerical examples in the Appendix. 

4. NUMERICAL STABILITY 

We next discuss the problem of estimating how sensitive the computed results 
are to round-off errors in given functional values and committed during the course of 
the computations. 

Influence of the Round-Offs in the Given Functional Values 

In Steps (a) and (b) we interpolate the integrand g, at x,,~ which gives the polynomial 
pi of degree less than n. We can write 

Pi(t) = k$l lktf) gdxnk), (21) 

where by Lagrange’s interpolation formula lk is the polynomial of degree less than n 
satisfying 

lk(&j> = 6kj * 

Integrating (21) we get 

pi(x) = f Lk(X) &(&kh 
k=l 

where 

and Pi is defined by (5). 

Lk(x) = j-’ lk(t) dt, 
-1 

(22) 

Assume now that the values g&,&) are perturbed by an amount not exceeding E 
in absolute value. Denote by dP,(x) the resulting error in P,(x). We find immediately 

where 

44 = i I LW. (23) 
r-1 

For the special choice of x,&k defined by (6) we get L,.( 1) = A,, in (19), the weights 
in Filippi’s rule. Hence we conclude /1(l) = 2. We show the more general result 
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LEMMA 3. Define fl by (23), LI, by (22), and &I, by (6). Then there is a constant C 
such that 

for all k and odd n. 

A(Xnk> = i ! Lt-(xnk)l < c 
r-l 

(24) 

Remark. The meaning of this result is that errors in the input data gi(x,,) are 
at most magnified by a factor C in the process of computing Pi(x,,). We note that 
the more general result 

4x) < C, x E [-I, l] 

may be established using the same argument as in the proof of this lemma. 

Proof of Lemma 3. Instead of x,~ we simply write tk . lk of (21) may be written 

U?a(t> 
lkCf) = (t - tk) Un’(f7J 

where as before U, is the Cebygev polynomial of the second kind. Thus 

(25) 

We now put t = cos 19, dj = j~/(n + l), and 8, = kn/(n + 1). Using the fact that 

U,(cos e) = 
sin(n+ I)0 

sin l3 

we find after straightforward calculations 

1 L.~(~~)I = $$ff j J”” &(e) sin(n + I) B de 1 
0 

where 

G(e) = cos 0 
1 

- cos ek: * 

We seek an upper bound for the integral in (26). We write 

where 

s ” z#) sin(n + 1) e df3 = 2 aE 
0 24 

s 

01 
al = z,(6) sin(n + 1) 0 do. 

81-l 

(27) 
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We note that zlc is increasing in the interval [0, 7~1 and has a simple pole at dl, . Thus 
useI * a, < 0 for 1 = 2, 3 ,..., k and a,-, . a, < 0 for 1 = k + 2, k + 3 ,..,, n. Further 
I a, I > I a,-, I, 1 = 2, 3,..., k and I a, I -=c / a,-, (, 1 = k + 2, k + 3 ,..., n. Thus 

< 1 ak 1 if j<k 

and 

d 1 ok / + 1 ak+l I if j > k. 

In order to bound the integral (26) we must estimate ak and a,,, . We find 

1 ak I = 1 JoLl zk(@ Sin@ -k 1) 0 d6 
I 

Then 

Now put 
Dnk = sin&]ak/. 

Next we apply the simple results 

2xl~r < sin x < x, x E LO, +I, 

1 cos(x + h) - cos x 1 >, h xGyin+h 1 sin X /. 

D,, < (7?/2) I” X-l sin A/(n + A) dh, 
--n 

&I, < n s 
0 

X-l sin h dh, 1 -=c k < (n + 1)/2, 
--n 

s 
’ &I, < X-1 sin h d/i, (n + 1)/2 < k < n. 
-fl 

. 

(28) 

(29) 

Thus D nk < D where D is the larger of the two integrals (28), (29). Returning to 
(26) we arrive at 

< sin et - D, nfl 
j<k 

I Lkuu 
( 2 sin ek D 
‘nfl’ j > k. 

Thus 

k=l 
sin 8, + 5 sin 8, 

I 
< 20. 

k=i 

Hence the lemma is proved, if we take C = 20. 11 
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In..uence of Round-O@ Committed During the Computations 

In the computer program pi is represented as an expansion in CebySev polynomials 
of the second kind 

p = i C,nUr-l 
T=l 

( p stands forp, orp,). We observe that cm depends both on r and n. Thus 

P(x) = 5 c,%(x), 
7=1 

u,(x) = j”z Ur-l(t) dt. 
-1 

Both c,~ and U,(X) are computed and stored with a relative accuracy which we denote 
by 7. We find immediately that the relative error 6P(x) caused by a relative error r) 
in cTn and v,(x) satisfies the relation 

(30) 

The right-hand side of (30) is easily evaluated during the calculations, and high values 
indicate loss in precision in the calculated values. 

We observe that of the entities in (30) V,(X) is the same for all integrands while c, 
reflects the properties of the function to be integrated. 

We prove 

LEMMA 4. Let q~ and Qn be as in Lemma 1 andput 

Qn = i c,~~,-,(x). 
f-=1 

Then 

(31) 

$$ i (C,*)’ = $ s” (1 - t2)1/2 y?(t) dt. 
5-=1 -1 

Proof. Qn interpolates q~ at x1, , x2@ ,..., x,, and has the expansion (31). Since 

s +l(l - t2)1/2 U:(t) dt = v/2, r = 0, 1, 2 ,..., 
-1 

il (‘-T’?~ = f .r_” (1 - t2)li2 Qn2(t) dt. 
1 

Thus 

i (cry2 - + j;l (1 - t2y2 ?,“(t) dt = ; j-T1 (1 - t2)1’2 (Q,2(t> - v2(t)) dt. 
7=1 
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By Lemma 1 we find, using the maximum norm (1 Ilrn . 

I Qfi2(0 - YWI = ItQnW + &>><QnW - df))l G (II Qn Ilm + II ‘p IL) &P 

and hence the assertion follows. 11 

Returning now to (30) we use Schwarz’ inequality and get 

Hence Lemma 4 can be used to assess the loss in accuracy caused by the fact that 
intermediate results are stored with a finite precision. 

5. CONCLUSIONS 

We have presented a method to calculate the integral (1) in an efficient manner 
under the conditions specified in (l), (2), and (3) in Section 2. We have shown con- 
vergence of the method and investigated its sensitivity for errors in input data and 
in intermediate results. Our theoretical conclusions are supported by many numerical 
experiments some of which are reported in the appendix. 

APPENDIX: NUMERICAL EXAMPLES 

Below we present four different examples of functions f0 and go , for which the 
analytical solution of (1) in Section 2 is known. 

EXAMPLE 1. 

.hw = & ; iL40 = & ; b, bl = [-I, 11; wl 9 8,) = 2. 

EXAMPLE 2. 

f&d = (1.1; x)” ; &-J(t) = & ; [a, bl = r-1, II; 

I,(& , g,) = 3332.97340063749. 
EXAMPLE 3. 

&(x) = 1 + tan2 x - 2 sin x cos x - 5 cos x sin* x, 

go(t) = &JO) ; [a, bl = L-1, 11, 
ZO(fO, g,,) = exp(2 tan 1 - 2 sin5 l} - 1 = 8.689494503013295. 
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EXAMPLE 4. In connection with tests of the formula for calculating matrix 
elements [5] an application to the linear harmonic oscillator was studied in [12]. 
Here one certainly knows the exact matrix elements, but as a measure of the accuracy 
of the formula this and corresponding applications have been of great help. The 
formula can in this case, except for a constant factor, be written as 

where p = 0, 1, 2, h = 2n + 1, p = 2m + 1, and n, m are the principal quantum 
numbers under consideration and where 

en(z) = -i(z” - h)li2, X > 0, X real, 

(Q*(z))“” = e-yz2 - h)l’4, 

h,(z) = S,:,, (z” - X)l12 dz, 

and F is a circle with radius A > max(M2, $13 and with its center at the origin, 
The analytical solution of 1, is 

A,,= 1, 

A = ‘+p 
2 4 

I+ ‘-p 
-3 4 

A4 = 3(h + I-Lj2 + 2(h - ,d2 + @ - &[7@ + p)” + (A - /L)2] 
32 256 

+ 0 - d2 (A + l-4” 
512 ’ 

In order to compute I1 numerically we must rewrite it into the required form (1). 
Put I1 = I1,JzO where 

Ilo = exp {[I,* (z” - h)l12 dz - [Ii2 (z” - p)1/2 dzl, 

z1/2(A-u)+2P 

I” = s, (QA(z))l12 (Q,(z))l12 exp 
((z’~ - h)l12 - (z’~ - ,I.#/~) dz’) dz. 

I,, can be evaluated analytically, because 

s 9,, (9 - h)l/‘J & = 5 (3 - h)lP - t In 1” + (fli A)1’2fe 
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Izo can be written in the required form (1) by integrating around the circle r, 
z = A(cos x + i sin x), 0 < x < 27~. This is not complicated but the exact formulas 
forfo(x) and g,,(x) are omitted here. Six different subcases are reported (4a-f). 

h P P A 
4a, d 23 21 0 20,8 

4b, e 21 23 1 20,8 

4c, f 21 25 2 20,8 

These four examples illustrate the following theoretical results. 

(a) The error decreases exponentially in nL . If l z is the relative error in Ii(f, g), 
formula (11) tells us to expect 

In ez = C + Dn, 

C, D are constants, for sufficiently large n, and until other kinds of errors will domi- 
nate. This is illustrated in Fig. 1. 

---------_ o_ ------ - _--_____ Q 

x 
\ 

.___._._,_. K 

-14 ~- 

-15 _ \ 
* -16 - .----+------- \ -.-. -.-.-.-. ~-L-~-Lqz ---A-+- 

-17. ! , 10 20 1 , 1 I I t I , ,' " 30 40 50 60 70. 80 90 loo 110 120 

FIG. 1. y = logarithm of relative error. 
Example G2 

1 -1 .)-..-.--- 
2 +,-- 
3 w5 *,--- 
4a M2 .,-.-. 
4b -120 X,- 
4c ml9000 0, - - - 
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(b) The speed with which the error decreases is dependent on the functions. 
(c) The accuracy of the best estimate, depends on the functionsf, and g,, 

since intermediate results are stored with finite precision. Compare the discussion 
at the end of Section 4. The loss of accuracy depends on the size of C, 

C,” = 5 (cry. 
r-1 

See Lemma 4. We have computed CeZ for examples 1, 3,4a-c. As can be seen from 
Table I, high values of Cnz (example 4b and 4c) are followed by worse accuracy of 
the best approximation. 

TABLE I 

Example n 

Relative error 

Estimate Actual Example n 

Relative error 

Estimate Actual 

1 7 0.57. 10-z 0.13 * 10-4 
15 0.13 . 10-b 0.16. 1O-Q 
31 0.16 . 1O-9 -0.11 . 10-16 
63 0.12 . 10-16 -0.12 . lo-‘j 

2 7 

15 
31 

63 

127 

3 7 

15 
31 

63 

127 

4a 7 
15 
31 
63 

127 

4b 7 
15 
31 

63 

127 

0.90 

0.42 

0.25 . 10-l 
0.50 f 10-4 
0.11 . 10-Q 

0.22 

0.53 ’ 10-S 
0.12 * 10-S 
0.32 . lo-l1 
0.10 . lo-16 

0.21 . 10-I 
-0.63 . 1O-S 
-0.68 . 10-e 

0.31 . 10-g 
-0.29 . lo-‘* 

0.55 * 102 
0.13 . 10 
0.39 * 10-d 
0.48 . 1O-8 
0.37 * 10-10 

0.44 4d 7 0.86 * 10-I -0.29 * 1O-2 
0.25 * 10-l 15 -0.30.10-a 0.15 . 10-a 
0.50. 10-4 31 0.14. 10-a 0.12. 10-d 
0.11 . 10-g 63 0.12 . 10-d 0.24. lo-’ 

-0.51 . IO-16 127 0.24. lo-’ 0.52 . lo-= 

0.53 * 10-S 42 7 -0.69 . lo1 0.97. IO-’ 
0.12 * 10-5 15 0.99. 10-l -0.25 . 1O-2 
0.32 * 10-l’ 31 -0.25 . 1O-2 0.20. 10-4 

-0.18 * lo-l6 63 0.20. 10-d 0.51 . lo-’ 
-0.19 * 10-l” 127 0.51 . 10-7 -0.70. IO-12 

-0.63 . 1O-3 4f 7 0.12 . 101 -0.25. lo2 
-0.68 * 10-B 15 -0.34 ’ 102 0.28 

0.31 . 10-e 31 0.28 -0.79. 10-a 
-0.72 - lo-= 63 -0.79. 10-d 0.22 * 10-G 

0.22 . 10-14 127 0.22. 10-B 0.37 * lo-” 

0.13 . 10 
0.39 . 10-d 
0.48 . 1O-8 
0.39 10-10 
0.16. lo-‘I 

4c 7 0.32 . 10 -0.53 * 108 
15 0.43 . 102 0.14 * 102 
31 0.14 . 102 -0.88 *lo-’ 
63 -0.88. 10-1 0.11 . 10-8 

127 0.54 . 10-10 0.53 . 10-10 
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(d) Finally, Table I shows that our error estimate is in general pessimistic, as 
expected. For large n though, when the roundoff errors are larger than the truncation 
errors, formula (9) does not give a strict error estimate. Compare examples 1 and 3 
where we even get an error estimate below the computer accuracy, %lO-ls which 
of course is absurd. For all other results the error estimate is either pessimistic or 
approximately, as shown in Table I. 
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